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Dissipation and Decoherence in a Quantum Oscillator

Vinay Ambegaokar1
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The time development of the reduced density matrix for a quantum oscillator damped
by coupling it to an ohmic environment is calculated via an identity of the Debye-Waller
form. Results obtained some years ago by Hakim and the author in the free-particle
limit(10) are thus recovered. The evolution of a free particle in a prepared initial state is
examined, and a previously published exchange(5,9) is illuminated with figures showing
no decoherence without dissipation.
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1. INTRODUCTION

In a recent paper in this journal, van Kampen(16) has re-examined dissipation and
noise in a quantum oscillator, treating it as a sub-system coupled to an environment.
In working out his model, he has introduced some nice methods. They are slightly
simplified and modified in this paper to revisit the closely related problem of
quantum coherence and decoherence.

It is worth emphasizing that the harmonic oscillator is particularly simple,
so that the analysis given here is not generalizable to more interesting systems.
However, it may make up in explicitness what it lacks in generality. Indeed, the
ultimate aim of this research is to further clarify the “positivity problem” in time
dependent quantum statistical equations(2,14). The present work is a first step in
that direction, in the hope that deriving largely known results in a simple way will
clear the path.

This simplicity may offer amusement if not instruction to my long-time
friends and colleagues Jim Langer and Pierre Hohenberg, despite the burdens
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of their high offices. It is a pleasure and honor to dedicate the paper to
them.

2. MODEL AND PRELIMINARIES

The model is described by the Hamiltonian

H = 1
2

[
P2

0 + �2
0 Q2

0

] + 1
2

∑
k

{
P2

k + ω2
k

[
Qk + (

αk Q0/ω
2
k

)]2}
, (1)

where the oscillator labeled 0 will be called “the sub-system” and the others
“the environment”. The quantum mechanical (and classical) equations of motion
obtained from Eq. (1) are

Q̈0 +
[
�2

0 +
∑

k

(αk/ωk)2

]
Q0 +

∑
k

αk Qk = 0

Q̈k + ω2
k Qk + αk Q0 = 0. (2)

Fourier transforming Eq. (2) and eliminating Qk , one obtains

g−1(ω + i0+)Q0 = 0, where (3)

g−1(z) = z2 − �2
0 −

∑
k

α2
k

(
1

z2 − ω2
k

+ 1

ω2
k

)
, (4)

z is a complex variable, and the i0+ in Eq. (3) introduces the causal boundary
condition. As pointed out in ref. [16], where it is called G, g−1(z) has zeros on
the real z axis corresponding to the normal mode frequencies, ων , of the coupled
system of oscillators, and Q0(ων) is the amplitude of the sub-system oscillator in
the νth mode.

Now, ohmic dissipation(3) requires

π

2

∑
k

(
α2

k /ωk

)
δ(ω − ωk) ≡ J (ω) = ηω (5)

for ω less than an upper cut-off ωc. Substituting this form into Eq. (4) yields, for
ωc � ω,

g−1(ω + i0+) = ω2 − �2
0 − 2η

π

∫ ωc

0
dω̄

ω2

(ω + i0+)2 − ω̄2

= ω2 − �2
0 + iωη, (6)

demonstrating very explicitly that Eqs. (1) and (5) do indeed construct a linearly
dissipative environment, with damping constant η, without changing the system
frequency �0.
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In ref. (16), it is noted that the orthogonal normal mode transformation matrix
X defined by

Q0 =
∑

ν

X0νqν Qk =
∑

ν

Xkνqν, (7)

where the qνs are the normal co-ordinates, is obtainable from the Green function
given in Eq. (4). The normalization

X2
0ν +

∑
k

X2
kν = 1 (8)

may be imposed on the transformation amplitudes for every mode ν. It follows
that

1

X0ν

=
√

1 +
∑

k

α2
k

/(
ω2

k − ω2
ν

)2

=
√

1

2ων

∂g−1

∂ων

and

Xkν = αk

ω2
ν − ω2

k

X0ν . (9)

One also learns from ref. (16) that Eq. (9) may be used to deftly perform sums over
normal modes. The complex function g(z) has poles only on the real axis and thus
the spectral representation

g(z) =
∫ ωc

−ωc

dω

2π

s(ω)

z − ω
. (10)

Using the explicit form for X0ν given in the second line of Eq. (9) one obtains a
formula that will be useful later in this work:∑

ν

X2
oν F(ων) = 2

∮
dz

2π i
zg(z)F(z)

= 2
∫ ωc

0

dω

2π
ωs(ω)F(ω). (11)

The contour surrounds the real axis, where the function F has been as-
sumed to be regular and zero for ω < 0; it has been evaluated using
Eq. (10).

Note also from Eq. (6) and its complex conjugate that for an ohmic environ-
ment

s(ω) = 2ωη(
ω2 − �2

0

)2 + ω2η2
. (12)
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3. TIME EVOLUTION OF THE REDUCED DENSITY MATRIX

To carry out the program of this section, initial conditions must be specified. I
shall use those of (5) and (9), which are a special case of ones originated, to the best
of my knowledge, in ref. (10). Assume that at t = 0 complete thermal equilibrium
is disturbed by a real “aperture function” α(Q0). The entire system is then allowed
to evolve to time t, and projected on to position states of the sub-system. The
resulting reduced density matrix is given by (h̄ = 1)

ρ(Q′
0 f , Q′′

0 f , t) ≡ T r{|Q′′
0 f 〉〈Q′

0 f |e−i Htα(Q0)ρth(H )α(Q0)e+i Ht }. (13)

In this equation, the primed quantities are ordinary numbers, the un-
primed ones operators, Tr indicates a trace over all states of H, and ρth ≡
exp{−βH}/T r exp{−βH} with β the reciprocal temperature. Fourier transform
the aperture function

α(Q0) =
∫

daα̃(a)ei Q0a, (14)

and express the projection operator in Eq. (13) as

|Q′′
0 f 〉〈Q′

0 f | =
∫

du dv f (u, v)ei P0uei Q0v with

f (u, v) = 1

2π
e−i Q′

0 f vδ(Q′
0 f − Q′′

of − u), (15)

proved by taking matrix elements of both sides, to see that

ρ(Q′
0 f , Q′′

0 f , t) =
∫

dadbdudvα̃(b)α̃(a) f (u, v)T ,

with T ≡ 〈
ei Q0bei P0(t)uei Q0(t)vei Q0a

〉
. (16)

Here the brackets mean an average with respect to ρth, and operators with a time
argument are in the Heisenberg picture. A somewhat simpler average is done fairly
heroically in ref. (16) using properties of Laguerre polynomials. However, since the
sub-system and environment are all harmonic, a low-brow method is available. A
single simple harmonic oscillator obeys the well known Debye-Waller identity for
thermal averages,

〈
eiqc

〉 = e− 1
2 c2〈q2〉

, (17)
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where q is the position operator and c a number. This is reviewed in the Appendix,
where it is also shown that a straightforward generalization yields2

ln T = − 1
2 [(a + b)2 + v2]

〈
Q2

0

〉 − 1
2 u2

〈
P2

0

〉 − bu〈Q0 P0(t)〉
− bv〈Q0 Q0(t)〉 − uv〈P0 Q0〉 − ua〈P0(t)Q0〉
− av〈Q0(t)Q0〉. (18)

Since the co-ordinate Q0 and the momentum P0 are linearly related to the normal
mode qνs and pνs via the known X0νs the correlators in Eq. (18) are readily
calculable, thereby formally completing the task of this section.

4. AN EXAMPLE

To illustrate the usefulness of these methods, consider 〈Q2
0〉, one of the averages

occurring in Eq. (18). From Eq. (7)

〈
Q2

0

〉 =
∑

ν

∑
ν ′

X0ν X0ν ′ 〈qνqν ′ 〉 =
∑

ν

X2
0ν

〈
q2

ν

〉 =
∑

ν

X2
0ν

(
1

2ων

coth 1
2βων

)
,

(19)
because the νs are independent oscillators, and 〈qν〉 = 0. The sum can now be
transformed using Eqs. (11) and (12). It is easy to do analytically at zero tem-
perature (β = ∞). Define the real part of the damped oscillator frequency via
�2 = �2

0 − η2/4 and factorize the denominator in Eq. (12) to obtain

〈Q2
0〉T =0 = η

2�

∫ ∞

0

dω

2π

[
1

(ω − �)2 + η2/4
− 1

(ω + �)2 + η2/4

]

= 1

2�

[
1 − 2

π
arctan

η

2�

]
. (20)

The last is a known answer for the dissipation-induced squeezing by an ohmic
bath (1,3). This effect is at the root of the effect of damping in reducing the rate of
escape from a metastable well (12).

5. TIME DEPENDENCE OF THE PROBABILITY

The position-space probability for the sub-system P(x, t) is obtained by
setting Q′

0 f = Q′′
0 f = x in Eq. (16), whereupon Eq. (15) requires that the variable

2 I have verified that in the free-particle limit this equation reproduces Eqs. (35a, 35b) of ref. [10]
except for an error of sign in Eq. (34a) and Appendix C. With this change of sign, A(t) is positive
and given by Eq. (24) in the present paper, Eq. (38) is correct, but the second form of Eq. (39) now
has a positive sign. This error was noted in(6).
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u ⇒ 0 in Eq. (18). The time dependence can then be completely described by

〈[Q0(t) − Q0(0)]Q0(0)〉 ≡ −C(t) + i A(t), (21)

this being the notation used in ref. (10) in the free-particle limit, with the sign as
corrected in footnote 2. One can now do the (gaussian) integrals in Eq. (16) to
obtain, with x ′ ≡ Q′

0i − Q′′
0i , X ′ ≡ 1

2 (Q′
0i + Q′′

0i ),

P(x, t) =
∫

d Q′
0i d Q′′

0iα(Q′
0i )α(Q′′

0i )J (x, x ′, X ′, t),

J = 1

4π A(t)

1√
2π

〈
Q2

0

〉 exp

[
i

x ′

2A(t)
(x − X ′)

]

× exp −
[

x ′2C(t)

4A2(t)
+ 1

2
〈
Q2

0

〉(X ′ − i
x ′C(t)

2A(t)

)2
]

. (22)

In the free-particle limit �0 → 0, 〈Q2
0〉 → ∞ and the normalized gaussian in X ′

must be replaced, to preserve dimensions and normalization, by L−1, where L is
the size of the system, yielding

J = 1

4π A(t)L
exp

[
i

x ′

2A(t)
(x − X ′) − x ′2C(t)

4A2(t)

]
. (23)

Using the method of Section 2, known results for a free particle follow from
Eq. (21):

A(t) = η

π

∫ ωc

0
dω

sin ωt

ω(ω2 + η2)
= 1

2η
(1 − e−ηt ),

C(t) = η

π

∫ ωc

0
dω coth

βω

2

(1 − cos ωt)

ω(ω2 + η2)
(24)

⇒ (βη � 1) − 1

βη2
(1 − e−ηt − ηt).

6. DECOHERENCE

Eq. (22)—which is not restricted to ohmic dissipation—is to my knowledge new,
and explicit enough to allow a general study of time development in this dissipative
quantum system. Previous attempts (2,8) in which I have been involved have for
technical reasons been restricted to high temperature, a limitation which it should
here be possible to avoid. Work, in progress, in this direction would seem to be
justified by experimental(4) and theoretical(15) interest in quantum information
storage.
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Fig. 1. Time evolution at low temperature, lth/d = 1. [The symbols are defined in the text].

The free particle limit, Eqs. (23, 24), has been derived by many different
methods—perhaps none as straightforward as the one here given. At finite η,
these equations (uncontroversially) display decoherence. This is particularly well
demonstrated in an example introduced in ref.(6). Here the aperture function is
taken to be a sum of two Gaussians, each of width σ and separated by a distance
d. The probability given by Eqs. (23) and (24) can then be written as a sum of
the probabilities from each slit alone (sum term) and an interference contribution
depending sinusoidally on a time dependent phase (interference term.) There is
an unresolved controversy(5,9) in the published literature about what is meant by
decoherence in this completely well defined problem. No one would doubt that the
amplitude of the interference term is a measure of coherence. In ref.(6) and other
publications (7) an “attenuation coefficient” is introduced which is equivalent to the
ratio of the amplitude of the interference term divided by the sum term, evaluated
at the mid-point between the slits. This quantity is by construction unity at t = 0.
It decreases rapidly with time. At high temperatures, in a sense to be made clear

Fig. 2. Time evolution at moderate temperature, lth/d = 1/
√

5.
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Fig. 3. Time evolution at high temperature, lth/d = 1/5.

below, it drops to zero, even when the environmental coupling is eliminated. This
is interpreted in refs(6,7) as “Decoherence without Dissipation.”

In a Comment(9) it is suggested that the measure of decoherence used in [6]
does not distinguish between the loss of phase information and the spreading of
wave packets on time scales less than the mixing time tmix = 2σd(m/h̄). Here σ

is the width of each slit, d the spacing between them, and I have reintroduced
Planck’s constant h̄ and the particle mass m to make the dimensions transparent.

This has been vigorously rebutted in a Reply(5).
Rather than repeat these arguments, I refer the interested reader to them.

However, since many readers may be intrigued by the idea of decoherence without
dissipation, I close this paper with 4 figures which show that there is no evidence
for any such thing in the uncontroversial Eqs. (23, 24). Since the disagreement
occurs in the limit of no dissipation, consider this case at various temperatures—
given by the ratio of the thermal de Broglie wavelength lth = √

β/2 (h̄/
√

m) to d.
The figures, in which σ/d = 0.05, show that at low temperatures, lth ∼ d there is

Fig. 4. Blow-up of Fig. 3 on the scale of τF L O = 0.02 tmix, for the chosen parameters.
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coherence without decoherence. At higher temperatures, there is no coherence at
all, even on the short time scale

τF L O =
√

8βm
σ 2

d
= 2tmix

lth

d
· σ

d
(25)

introduced in(6), and thus nothing to decohere. In this limit, coherence is already
destroyed by the Hakim-Ambegaokar initial condition.
Added Note. After this paper was completed, I was made aware of(11) in which
normal co-ordinates are used to treat the problem of many non-interacting fermions
coupled to a disspative environment in a harmonic oscillator.

APPENDIX

A wonderfully short proof of the identity for thermal averages〈
exp

[∑
i

di ai + ci a
†
i

]〉
= exp

[
1

2

∑
i

〈
(di ai + ci a

†
i )2

〉]
, (26)

where ai , a†
i are boson annihilation and creation operators and the subscript i

refers to independent harmonic oscillators, is given in a single mannerist, if not
rococo, sentence by Mermin(13). Note that, since all the operators in Eq. (16)
have c-number commutators, it can be put in the form of the left hand side of
Eq. (26) for the subsystem oscillator labeled 0, using the Baker-Haussdorf identity
for such operators: eAeB = e[A+B]e

1
2 [A,B]. Now, express P0 and Q0 in terms of the

(normal) co-ordinates, of the independent oscillators ν. The Debye-Waller identity
Eq. (26) then has in the exponent a sum over correlators for each ν. Note that as in
Eq. (19), a single sum can be replaced by a double sum, because 〈qν〉 = 〈pν〉 = 0,
yielding Eq. (18).
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